Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Int J Environ Res Public Health ; 20(3)2023 01 28.
Article in English | MEDLINE | ID: covidwho-2254801

ABSTRACT

Transcranial pulse stimulation (TPS) is a recent development in non-invasive brain stimulations (NIBS) that has been proven to be effective in terms of significantly improving Alzheimer patients' cognition, memory, and execution functions. Nonetheless, there is, currently, no trial evaluating the efficacy of TPS on adults with major depression disorder (MDD) nationwide. In this single-blinded, randomized controlled trial, a 2-week TPS treatment comprising six 30 min TPS sessions were administered to participants. Participants were randomized into either the TPS group or the Waitlist Control (WC) group, stratified by gender and age according to a 1:1 ratio. Our primary outcome was evaluated by the Hamilton depression rating scale-17 (HDRS-17). We recruited 30 participants that were aged between 18 and 54 years, predominantly female (73%), and ethnic Chinese from 1 August to 31 October 2021. Moreover, there was a significant group x time interaction (F(1, 28) = 18.8, p < 0.001). Further, when compared with the WC group, there was a significant reduction in the depressive symptom severity in the TPS group (mean difference = -6.60, p = 0.02, and Cohen's d = -0.93). The results showed a significant intervention effect; in addition, the effect was large and sustainable at the 3-month follow-up. In this trial, it was found that TPS is effective in reducing depressive symptoms among adults with MDD.


Subject(s)
Depressive Disorder, Major , Transcranial Direct Current Stimulation , Humans , Adult , Female , Adolescent , Young Adult , Middle Aged , Male , Pilot Projects , Depression/therapy , Depressive Disorder, Major/therapy , Transcranial Direct Current Stimulation/methods , Cognition , Treatment Outcome , Double-Blind Method
2.
Compr Psychiatry ; 122: 152371, 2023 04.
Article in English | MEDLINE | ID: covidwho-2259187

ABSTRACT

BACKGROUND: Transcranial direct current stimulation (tDCS) is a non-invasive form of neurostimulation with potential for development as a self-administered intervention. It has shown promise as a safe and effective treatment for obsessive compulsive disorder (OCD) in a small number of studies. The two most favourable stimulation targets appear to be the left orbitofrontal cortex (L-OFC) and the supplementary motor area (SMA). We report the first study to test these targets head-to-head within a randomised sham-controlled trial. Our aim was to inform the design of future clinical research studies, by focussing on the acceptability and safety of the intervention, feasibility of recruitment, adherence to and tolerability of tDCS, and the size of any treatment-effect. METHODS: FEATSOCS was a randomised, double-blind, sham-controlled, cross-over, multicentre study. Twenty adults with DSM-5-defined OCD were randomised to treatment, comprising three courses of clinic-based tDCS (SMA, L-OFC, Sham), randomly allocated and delivered in counterbalanced order. Each course comprised four 20-min 2 mA stimulations, delivered over two consecutive days, separated by a 'washout' period of at least four weeks. Assessments were carried out by raters who were blind to stimulation-type. Clinical outcomes were assessed before, during, and up to four weeks after stimulation. Patient representatives with lived experience of OCD were actively involved at all stages. RESULTS: Clinicians showed willingness to recruit participants and recruitment to target was achieved. Adherence to treatment and study interventions was generally good, with only two dropouts. There were no serious adverse events, and adverse effects which did occur were transient and mostly mild in intensity. Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) scores were numerically improved from baseline to 24 h after the final stimulation across all intervention groups but tended to worsen thereafter. The greatest effect size was seen in the L-OFC arm, (Cohen's d = -0.5 [95% CI -1.2 to 0.2] versus Sham), suggesting this stimulation site should be pursued in further studies. Additional significant sham referenced improvements in secondary outcomes occurred in the L-OFC arm, and to a lesser extent with SMA stimulation. CONCLUSIONS: tDCS was acceptable, practicable to apply, well-tolerated and appears a promising potential treatment for OCD. The L-OFC represents the most promising target based on clinical changes, though the effects on OCD symptoms were not statistically significant compared to sham. SMA stimulation showed lesser signs of promise. Further investigation of tDCS in OCD is warranted, to determine the optimal stimulation protocol (current, frequency, duration), longer-term effectiveness and brain-based mechanisms of effect. If efficacy is substantiated, consideration of home-based approaches represents a rational next step. TRIAL REGISTRATION: ISRCTN17937049. https://doi.org/10.1186/ISRCTN17937049.


Subject(s)
Motor Cortex , Obsessive-Compulsive Disorder , Transcranial Direct Current Stimulation , Adult , Humans , Transcranial Direct Current Stimulation/methods , Cross-Over Studies , Feasibility Studies , Treatment Outcome , Obsessive-Compulsive Disorder/therapy
3.
Front Immunol ; 13: 935614, 2022.
Article in English | MEDLINE | ID: covidwho-2232578

ABSTRACT

Following an acute COVID-19 infection, a large number of patients experience persisting symptoms for more than four weeks, a condition now classified as Long-COVID syndrome. Interestingly, the likelihood and severity of Long-COVID symptoms do not appear to be related to the severity of the acute COVID-19 infection. Fatigue is amongst the most common and debilitating symptoms of Long-COVID. Other symptomes include dyspnoea, chest pain, olfactory disturbances, and brain fog. Fatigue is also frequently reported in many other neurological diseases, affecting a broad range of everyday activities. However, despite its clinical significance, limited progress has been made in understanding its causes and developing effective treatment options. Non-invasive brain stimulation (NIBS) methods offer the unique opportunity to modulate fatigue-related maladaptive neuronal activity. Recent data show promising results of NIBS applications over frontoparietal regions to reduce fatigue symptoms. In this current paper, we review recent data on Long-COVID and Long-COVID-related fatigue (LCOF), with a special focus on cognitive fatigue. We further present widely used NIBS methods, such as transcranial direct current stimulation, transcranial alternating current stimulation, and transcutaneous vagus nerve stimulation and propose their use as possible therapeutic strategies to alleviate individual pathomechanisms of LCOF. Since NIBS methods are safe and well-tolerated, they have the potential to enhance the quality of life in a broad group of patients.


Subject(s)
COVID-19 , Transcranial Direct Current Stimulation , Humans , Transcranial Direct Current Stimulation/methods , Transcranial Magnetic Stimulation/methods , Post-Acute COVID-19 Syndrome , Quality of Life , COVID-19/complications , COVID-19/therapy , Brain/physiology , Cognition/physiology
4.
Brain Stimul ; 16(1): 100-107, 2023.
Article in English | MEDLINE | ID: covidwho-2176849

ABSTRACT

BACKGROUND: and purpose: Fatigue is among the most common persistent symptoms following post-acute sequelae of Sars-COV-2 infection (PASC). The current study investigated the potential therapeutic effects of High-Definition transcranial Direct Current Stimulation (HD-tDCS) associated with rehabilitation program for the management of PASC-related fatigue. METHODS: Seventy patients with PASC-related fatigue were randomized to receive 3 mA or sham HD-tDCS targeting the left primary motor cortex (M1) for 30 min paired with a rehabilitation program. Each patient underwent 10 sessions (2 sessions/week) over five weeks. Fatigue was measured as the primary outcome before and after the intervention using the Modified Fatigue Impact Scale (MFIS). Pain level, anxiety severity and quality of life were secondary outcomes assessed, respectively, through the McGill Questionnaire, Hamilton Anxiety Rating Scale (HAM-A) and WHOQOL. RESULTS: Active HD-tDCS resulted in significantly greater reduction in fatigue compared to sham HD-tDCS (mean group MFIS reduction of 22.11 points vs 10.34 points). Distinct effects of HD-tDCS were observed in fatigue domains with greater effect on cognitive (mean group difference 8.29 points; effect size 1.1; 95% CI 3.56-13.01; P < .0001) and psychosocial domains (mean group difference 2.37 points; effect size 1.2; 95% CI 1.34-3.40; P < .0001), with no significant difference between the groups in the physical subscale (mean group difference 0.71 points; effect size 0.1; 95% CI 4.47-5.90; P = .09). Compared to sham, the active HD-tDCS group also had a significant reduction in anxiety (mean group difference 4.88; effect size 0.9; 95% CI 1.93-7.84; P < .0001) and improvement in quality of life (mean group difference 14.80; effect size 0.7; 95% CI 7.87-21.73; P < .0001). There was no significant difference in pain (mean group difference -0.74; no effect size; 95% CI 3.66-5.14; P = .09). CONCLUSION: An intervention with M1 targeted HD-tDCS paired with a rehabilitation program was effective in reducing fatigue and anxiety, while improving quality of life in people with PASC.


Subject(s)
COVID-19 , Transcranial Direct Current Stimulation , Humans , Transcranial Direct Current Stimulation/methods , SARS-CoV-2 , Quality of Life , Post-Acute COVID-19 Syndrome , COVID-19/complications , Pain/etiology , Fatigue/etiology , Fatigue/therapy , Brain/physiology
5.
Brain Stimul ; 15(3): 761-768, 2022.
Article in English | MEDLINE | ID: covidwho-2130191

ABSTRACT

BACKGROUND: Both activated by environmental odorants, there is a clear role for the intranasal trigeminal and olfactory nerves in smell function. Unfortunately, our ability to perceive odorants decreases with age or with injury, and limited interventions are available to treat smell loss. OBJECTIVE: We investigated whether electrical stimulation of the trigeminal nerve via trigeminal nerve stimulation (TNS) or transcranial direct current stimulation (tDCS) modulates odor sensitivity in healthy individuals. METHODS: We recruited 20 healthy adults (12 Female, mean age = 27) to participate in this three-visit, randomized, double-blind, sham-controlled trial. Participants were randomized to receive one of three stimulation modalities (TNS, tDCS, or sham) during each of their visits. Odor detection thresholds were obtained at baseline, immediately post-intervention, and 30-min post-intervention. Furthermore, participants were asked to complete a sustained attention task and mood assessments before odor detection testing. RESULTS: Findings reveal a timeXcondition interaction for guaiacol (GUA) odorant detection thresholds (F (3.188, 60.57) = 3.833, P = 0.0125), but not phenyl ethyl alcohol (PEA) odorant thresholds. At 30-min post-stimulation, both active TNS and active tDCS showed significantly increased sensitivity to GUA compared to sham TNS (Sham TNS = -8.30% vs. Active TNS = 9.11%, mean difference 17.43%, 95% CI 5.674 to 29.18, p = 0.0044; Sham TNS = -8.30% vs. Active tDCS = 13.58%, mean difference 21.89%, 95% CI 10.47 to 33.32, p = 0.0004). CONCLUSION: TNS is a safe, simple, noninvasive method for boosting olfaction. Future studies should investigate the use of TNS on smell function across different stimulation parameters, odorants, and patient populations.


Subject(s)
Smell , Transcranial Direct Current Stimulation , Adult , Double-Blind Method , Electric Stimulation , Female , Humans , Transcranial Direct Current Stimulation/methods , Trigeminal Nerve/physiology
6.
PLoS One ; 17(6): e0269491, 2022.
Article in English | MEDLINE | ID: covidwho-1933336

ABSTRACT

BACKGROUND: Neuronal dysfunction plays an important role in the high prevalence of HIV-associated neurocognitive disorders (HAND) in people with HIV (PWH). Transcranial direct current stimulation (tDCS)-with its capability to improve neuronal function-may have the potential to serve as an alternative therapeutic approach for HAND. Brain imaging and neurobehavioral studies provide converging evidence that injury to the anterior cingulate cortex (ACC) is highly prevalent and contributes to HAND in PWH, suggesting that ACC may serve as a potential neuromodulation target for HAND. Here we conducted a randomized, double-blind, placebo-controlled, partial crossover pilot study to test the safety, tolerability, and potential efficacy of anodal tDCS over cingulate cortex in adults with HIV, with a focus on the dorsal ACC (dACC). METHODS: Eleven PWH (47-69 years old, 2 females, 100% African Americans, disease duration 16-36 years) participated in the study, which had two phases, Phase 1 and Phase 2. During Phase 1, participants were randomized to receive ten sessions of sham (n = 4) or cingulate tDCS (n = 7) over the course of 2-3 weeks. Treatment assignments were unknown to the participants and the technicians. Neuropsychology and MRI data were collected from four additional study visits to assess treatment effects, including one baseline visit (BL, prior to treatment) and three follow-up visits (FU1, FU2, and FU3, approximately 1 week, 3 weeks, and 3 months after treatment, respectively). Treatment assignment was unblinded after FU3. Participants in the sham group repeated the study with open-label cingulate tDCS during Phase 2. Statistical analysis was limited to data from Phase 1. RESULTS: Compared to sham tDCS, cingulate tDCS led to a decrease in Perseverative Errors in Wisconsin Card Sorting Test (WCST), but not Non-Perseverative Errors, as well as a decrease in the ratio score of Trail Making Test-Part B (TMT-B) to TMT-Part A (TMT-A). Seed-to-voxel analysis with resting state functional MRI data revealed an increase in functional connectivity between the bilateral dACC and a cluster in the right dorsal striatum after cingulate tDCS. There were no differences in self-reported discomfort ratings between sham and cingulate tDCS. CONCLUSIONS: Cingulate tDCS is safe and well-tolerated in PWH, and may have the potential to improve cognitive performance and brain function. A future study with a larger sample is warranted.


Subject(s)
HIV Infections , Transcranial Direct Current Stimulation , Adult , Aged , Double-Blind Method , Female , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/physiology , HIV Infections/complications , HIV Infections/therapy , Humans , Middle Aged , Pilot Projects , Transcranial Direct Current Stimulation/methods
7.
R I Med J (2013) ; 103(10): 47-50, 2020 Dec 01.
Article in English | MEDLINE | ID: covidwho-952731

ABSTRACT

The COVID-19 pandemic has transformed the practice of medicine. We interviewed Physical Medicine and Rehabilitation (PM&R) specialist physicians providing rehabilitation services throughout Rhode Island to organize a narrative assessing the pandemic's impact on the state's rehabilitation community and the responses of its leaders. Almost half of rehabilitation providers needed to suspend their services during the initial peak of the pandemic. Most experienced reductions in the size of their practices, as well as personnel issues that contributed to burnout. All physicians used telemedicine to connect with patients. Many reported issues with accessing personal protective equipment and providing clinical opportunities for trainees. Inpatient rehabilitation policies and practices helped to maintain access for COVID-positive and negative patients, yet challenges were faced when configuring physical space to abide by CDC social distancing guidelines and providing care without patient visitors. Despite setbacks, the pandemic outlined opportunities for improvement of healthcare organization and delivery.


Subject(s)
COVID-19/enzymology , COVID-19/therapy , Physical and Rehabilitation Medicine/organization & administration , Telemedicine/methods , Transcranial Direct Current Stimulation/methods , Humans , Rhode Island
8.
Behav Neurosci ; 134(5): 369-383, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-811615

ABSTRACT

This study investigated whether the application of high definition transcranial DC stimulation (HD-tDCS) to the dorsolateral prefrontal cortex reduces cue-induced food craving when combined with food-specific inhibitory control training. Using a within-subjects design, participants (N = 55) received both active and sham HD-tDCS across 2 sessions while completing a Go/No-Go task in which foods were either associated with response inhibition or response execution. Food craving was measured pre and post stimulation using a standardized questionnaire as well as desire to eat ratings for foods associated with both response inhibition and response execution in the training task. Results revealed no effect of HD-tDCS on reducing state food craving or desire to eat. Due to the COVID-19 pandemic, we were unable to achieve our maximum preplanned sample size or our minimum desired Bayesian evidence strength across all a priori hypotheses; however 6 of the 7 hypotheses converged with moderate or stronger evidence in favor of the null hypothesis over the alternative hypothesis. We discuss the importance of individual differences and provide recommendations for future studies with an emphasis on the importance of cognitive interventions. (PsycInfo Database Record (c) 2020 APA, all rights reserved).


Subject(s)
Craving/physiology , Food Preferences/physiology , Prefrontal Cortex/physiology , Adult , Bayes Theorem , Cross-Over Studies , Cues , Female , Food , Humans , Male , Surveys and Questionnaires , Transcranial Direct Current Stimulation/methods
SELECTION OF CITATIONS
SEARCH DETAIL